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Multigrid, Semi-Refinement and Fluid Flow

PW. Hemker

1. INTRODUCTION

One of the continuous, major challenges in numerical analysis is the fast
solution of partial differential equations (PDEs). Many different types of
such equations exist, appearing in many areas of science and technology,
e.¢., when fluid flow problems have to be computed.

When PDEs are solved numerically, they have to be discretized, 1.e. their
solution, which is a set of functions defined over an area, is characterized by
a set of N numbers, and the original differential equations are transformed
into a system of IV algebraic equations in which these N numbers are the
unknowns. The difficulty is that, for an accurate approximation of the
solution, the number N should be chosen large, which results in a large size
of the system of algebraic equations.

For problems in which the solution is a function over a two-dimensional
domain the size of the system can already be very large, if the solution 1s a
function of three space variables, the size can be enormous.

To solve these large systems of equations, special techniques have been
developed. Among these, the multigrid method is optimal in the sense that
it is the only known approach by which the amount of computational work
to solve the algebraic system is only proportional to N, the number of
unknowns. For all other methods the amount of work grows faster than
directly proportional with V.
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Figure 1. The domain €2, discretized by a uniform mesh.

2. EXAMPLE

2.1. The problem

T'he basic model problem to demonstrate the value of multigrid has always

been the Poisson equation on a square. This is a typical example for a
general elliptic boundary value problem,

—Au=f in Q=(0,1)*; w=0 on 9N. (2.1)

A uniform n x n-mesh is placed over €2, as shown in figure 1. This means
that n 4+ 1 equidistant mesh-lines are drawn in the horizontal, and the same
number in the vertical direction. The distance between the mesh-lines is
called the mesh-width, h = 1/n.

T'he grid points are z;;, where 0 < i,5 < n. If we want to approximate
the solution of (2.1) numerically, discretisation is applied to (2.1) to get a
set of linear equations:

AU = F, (2.2)

where F;_1y(n+1)+; = h°f(x;;), and A is a block tridiagonal matrix with
a special structure. The system has N = (n + 1)? equations and the same
number of unknowns.

The element U¢;_1)(,+41)+, of the solution vector U in the system of equa-
tions (2.2) represents the approximate solution of equation (2.1) at the point
Tijyi.e. Uy—1y(n+1)+; =~ u(x;;j). The accuracy of this approximation depends
on the type of discretisation and on h, the width of the mesh applied. This
means that the approximation becomes more accurate if more mesh-lines
are Introduced. Typically, for a simple discretisation method, the error in
the solution, |U;—1yns1)+; — u(x;;)|, is proportional to h*. If higher accu-
racies are required, smaller values of A~ may be needed, i.e. a large number of
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mesh-points may be necessary. Such large numbers of mesh-points give rise
to very large systems (2.2), and the techniques used to solve such systems of
moderate size (e.g., Gauss elimination) cannot be applied because the num-
ber of arithmetic operations (additions and multiplications) to compute the
solution by these methods is proportional to N°.

2.2. The solutions

For large systems of type (2.2), Gauss elimination would take too much
time, even on present day’s fastest computers, and different methods are
used, that take advantage of the special properties of such equations. One
such special property is, e.g., that although the system has NV = (n + 1)?
unknowns, in each equation only a limited number of unknowns is involved,
typically less than 10. This means that in the matrix A4 in (2.2) most
entries are equal to zero, which reduces the amount of work considerably;
but also other special properties of the matrix A can be used. All these
speclal methods to solve discretized PDEs are iterative methods, where a
first guess of the solution 1s improved step by step in an iteration process.

Until the sixties, simple relaxation methods were very popular. Here, all
separate equations in (2.2) are scanned one by one, and each time when an
equation 1s visited, the corresponding unknown is updated, based on the
present information about the other unknowns. Such an approach was first
mentioned by C.F. Gauss, in a letter to Chr.L. Gerling (26 December 1823),
where he mentions: ‘Das indirekte Verfahren lasst sich halb im Schlafe
ausfuhren, oder man kann wahrend desselben an andere Dinge denken’.

Later, in the seventies, more efficient iterative methods, based on the con-
struction of Krylov spaces, appeared, such as the preconditioned conjugate
eradient method, GMRES or—a more recent development—Bi-CG-Stab.
Nowadays, these methods are the most popular ones to solve the very large
systems. One reason is that these methods are relatively easy to implement
1N a computer prograim.

However, to restrict the amount of work to O(/N), we have to resort to
multigrid (MG) methods. These methods have a more complex structure.
Invented in the sixties, they got the full attention of the numerical commu-
nity not before 1980. A pioneering paper in the late seventies, [1], started
the interest, and at present the multigrid method is well-accepted and 1n
many fields it is successfully applied [3], see also figure 2.

3. MULTIGRID AND SEMI-COARSENING

The principle behind the MG technique is the fact that simple relaxation
techniques only efficiently reduce the high-frequency errors on a mesh, and
that the low-frequency errors can better be reduced by a discrete equation on
a related coarser mesh with essentially less mesh points. (These errors may
be compared to the disturbances of a quiet water surface, which in general
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Figure 2. Streamline distribution around a half cross-section of the Hermes spaceplane.
Applying multigrid methods, CWI studied numerical solutions of equations describing the

flow around heavier-than-air craft as a part of the European space programme. Photo:
Dassault.

consist of a spectrum ranging from short to long waves.) Now the MG

method uses this principle recursively to solve the problem on the coarser

)

meshes (see figure 3). All computational work together (on the coarse and
the fine meshes) to solve the differential problem as accurate as is possible
on the finest m

It 18 w

sh (with NV mesh points) is still O(N).
Il known how multigrid methods can be used for two-dimensional
2D) problems, and that the same techniques can be used for three-dim

e

sional (.

11-
problems as well. One may even point to the fact that the total
aimount of work on the coarse grids is relatively smaller in the 3D-case.
than m the 2D-case. However, the reverse side is that only a relatively
small amount of error components can be annihilated by these coarse gric
corrections. Still today, the consequence is that in the 3D-case powerfu
relaxation methods are required to reduce the total error with a sufficient
efficiency.

One possible relaxation procedur

¥

15 alternating plane-relaxation, in which
all planes m the cube are visited by different orderings, and where for each
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Figure 3. A classical sequence of grids in two dimensions.

plane a 2D sub-problem is solved (by a 21 MG method). This procedure is
not very attractive, because there are many possibilities to order the planes
i the cube. and a choice has to be made how these planes have to be visited.
For a general problem such a choice is artificial, and the one choice may be
better for the one problemn while another chotce can be advantageous i an-
other situation. Such 3D-1methods are also hard to vectorize or to parallelize
so that we may have Little advantage of new computer architectures.
However, there exists an alternative. Already for 2D fluid flow problems
it had beconie clear that it is sometimes better to generate coarser grids, not
by taking together a 2 x2 set of four small cells to form one bigger celll but to
take together only 2 cells. so that a coarser mesh is obtained with a different
mesh-size ratio. This 1s the principle ot semi-coarsening. Here also we
have the argument that the semi-coarsening is direction-dependent, and that
there are more ways to assemble pairs of cells to forin the coarse grids. But
the general. problem-independent case we mayv apply both scimi-coarsenings
at the samme time. In that case the fine grid has two corresponding coarse
orids. Now we have to study how the corrections from both coarse grids
call cooperate to vield a good coarse grid correction for the solution on the

(:

finer grid.

We can approach the same technique from the other side. We may start
with a coarse grid and make fincr and finer grids, each tinme by halving grid
cells into two finer cells (see figure 4). This principle of refinement can also
be applied in three dimensions. In this case the nummber ot possible grid
refinements 1s even larger (sce figure 5H).

This approach of semi-refinement can be very powertul if 1t 1s combined

with adaptive meshing, i.c.. in all meshes only those cells are created that

really contribute best to the reduction of the total error. Here the idea of

hierarchical basis plays an important role, in order to combine the function
approximations on the different grids imto a single, unique representation.

4. ReEspArcH AT CWI

At CWT in recent vears different applications have becn studied, where MG
was used to solve the discrete equations. Until 1994 all this work was con-
cerned with problems in two space dimensions. Since 1984 fluid flow prob-
lems have been a major area of interest for MG investigations. First the
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Figure 4. A family of semi-refined grids in two dimensions.

steady state Euler equations for inviscid compressible flow were considered.
The equations differ essentially from (2.1) because the Euler equations are
not elliptic, but—as time-dependent equations—hyperbolic. The approach
to solve these 1s: to base the MG procedure on a finite-volume upwind dis-
cretisation. Later the same approach was extended for the compressible
Navier-Stokes equations. In the steady case, these equations are elliptic,
but for high Reynolds numbers (the interesting case in aerodynamical ap-
plications) they are singularly perturbed. This implies that thin layers may
appear 1n the solution and that outside such layers the solution behaves
very much like the Euler equations.

Steered by a contract with the European Space Agency, from 1988 to
1991, research was done tor the special case of hypersonic flows. For a more
recent contract, with a scientific board of the European Union, we stud-
led structured adaptive methods for compressible lows. In these adaptive
methods the refinement of the grids depends (automatically) on the features
of the solution that is computed. Some examples will be given below. For
more details we refer to [2].

At this moment the research is directed to the use of MG methods for 3D
problems. A data structure has been developed to allow a well-structured
coding of the self-adaptive semi-refinement algorithms. Procedures for self-
adaptive representation of 3D-functions are now available, and the first
experiments with 3D fluid How problems have been carried out. In the mean
time theoretical developments are continuing. Lately, Fourier analysis was
used to compute the convergence rate of semi-coarsened MG algorithms.
The computed rates were confirmed by numerical experiments.
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Figure 5. Semi-refinement of the cube. Grids on levels 0, 1, 2, and 3.

5. FLUID FLOW PROBLEMS

If the MG method is used, starting from a coarse mesh and constructing
finer and finer meshes, this procedure can be continued until the approx-
imate solution is sufficiently accurate. If the solution is not very regular,
some parts of the domain will need more refinement than other parts. How
far the refinement should be continued depends on the solution itself, and
can be decided during the computation. In this way self-adaptive algo-
rithms are developed, that minimize the number of gridpoints required, for
a given precision. At CWI such algorithms have been studied in detail
by H.T.M. van der Maarel. Algorithms have been developed for the Eu-
ler equations for compressible, inviscid flow, and also for the compressible
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Navier-Stokes equations. An example of a solution of the Euler equations on
a selt-adaptive grid is given in figure 6, where the adapted grid and isolines
for the Mach number distribution are shown for the flow over a NACA0012
alrfoil.

l‘ ey

Figure 6. Euler solution for flow over an airfoil: the regular adaptive grid (left), and
Mach number distribution (right).

The computation with the Navier-Stokes equations can be seen as an ex-
tension with diffusive terms of the same procedure for the Euler equations.
Apart from the additional diffusive flux computations and boundary condi-
tions, all techniques for the Navier-Stokes equations are the same as for the
Euler flow computations. The convective part of the numerical flux is the
same. For Navier-Stokes computations the flux is extended with a diffusive
part, involving shear stresses and temperature gradients. The convective
flux may be computed with either O(h) or O(h?) accuracy. The diffusive
part is always computed with @(h?) accuracy.

Because the difference scheme for the diffusive part of the equations ex-
tends over a different set of grid cells compared to the convective part, much
attention has to be paid to the different possible grid structures encountered
in an adaptively refined Navier-Stokes grid.

T'he multigrid smoother approximately inverts the first-order accurate
convective operator, extended with the second-order accurate diffusive terms.
As with the Euler equations, the equations resulting from the second-order
accurate discretisation are solved by defect correction.

An example is the computation of a flow along an adiabatic flat plate (see
figure 7). The plate is located at y = 0, —0.5 < x < 0.5, and the Reynolds
number (Re) equals 100. The result shown has heen obtained with the
first-order accurate discretisation and a refinement criterion based on the

the cross-flow gradient of the velocity component times the mesh-width (the
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Figure 7. Navier-Stokes solution over a flat plate, Re=100, regular adaptive grid
(above), and velocity in the x-direction (below).

undivided difference).: Hgure 7 shows the resulting grid when refinements
are introduced where the undivided difference is larger than 0.1 p (above),
and an iso-line plot of the computed velocity in the x-direction (below).
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